New structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape leukemia virus.

نویسندگان

  • Karen B Farrell
  • Gabor E Tusnady
  • Maribeth V Eiden
چکیده

Infection of a host cell by a retrovirus requires an initial interaction with a cellular receptor. For numerous gammaretroviruses, such as the gibbon ape leukemia virus, woolly monkey virus, feline leukemia virus subgroup B, feline leukemia virus subgroup T, and 10A1 murine leukemia virus, this receptor is the human type III sodium-dependent inorganic phosphate transporter, SLC20A1, formerly known as PiT1. Understanding the critical receptor functionalities and interactions with the virus that lead to successful infection requires that we first know the surface structure of the cellular receptor. Previous molecular modeling from the protein sequence, and limited empirical data, predicted a protein with 10 transmembrane helices. Here we undertake the biochemical approach of substituted cysteine accessibility mutagenesis to resolve the topology of this receptor in live cells. We discover that there are segments of the protein that are unexpectedly exposed to the outside milieu. By using information determined by substituted cysteine accessibility mutagenesis to set constraints in HMMTOP, a hidden Markov model-based transmembrane topology prediction method, we now propose a comprehensive topological model for SLC20A1, a transmembrane protein with 12 transmembrane helices and 7 extracellular regions, that varies from previous models and should permit approaches that define both virus interaction and transport function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an extracellular domain within the human PiT2 receptor that is required for amphotropic murine leukemia virus binding.

Human PiT2 (PiT2) is a multiple-membrane-spanning protein that functions as a type III sodium phosphate cotransporter and as the receptor for amphotropic murine leukemia virus (A-MuLV). Human PiT1 (PiT1), another type III sodium phosphate cotransporter, is a highly related protein that functions as a receptor for gibbon ape leukemia virus but not for A-MuLV. The ability of PiT1 and PiT2 to func...

متن کامل

Extracellular inorganic phosphate regulates gibbon ape leukemia virus receptor-2/phosphate transporter mRNA expression in rat bone marrow stromal cells.

In mammalian cells, several observations indicate not only that phosphate transport probably regulates local inorganic phosphate (Pi) concentration, but also that Pi affects normal cellular metabolism, which in turn regulates apoptosis and the process of mineralization. To elucidate how extracellular Pi regulates cellular functions of pre-osteoblastic cells, we investigated the expression of ty...

متن کامل

Entry of amphotropic murine leukemia virus is influenced by residues in the putative second extracellular domain of its receptor, Pit2.

Human cells express distinct but related receptors for the gibbon ape leukemia virus (GALV) and the amphotropic murine leukemia virus (A-MuLV), termed Pit1 and Pit2, respectively. Pit1 is not able to function as a receptor for A-MuLV infection, while Pit2 does not confer susceptibility to GALV. Previous studies of chimeric receptors constructed by interchanging regions of Pit1 and Pit2 failed t...

متن کامل

Gibbon ape leukemia virus receptor functions of type III phosphate transporters from CHOK1 cells are disrupted by two distinct mechanisms.

The Chinese hamster cell lines E36 and CHOK1 dramatically differ in susceptibility to amphotropic murine leukemia virus (A-MuLV) and gibbon ape leukemia virus (GALV); E36 cells are highly susceptible to both viruses, CHOK1 cells are not. We have previously shown that GALV can infect E36 cells by using both its own receptor, HaPit1, and the A-MuLV receptor, HaPit2. Given that the two cell lines ...

متن کامل

Entry of amphotropic and 10A1 pseudotyped murine retroviruses is restricted in hematopoietic stem cell lines.

Although transduction with amphotropic murine leukemia virus (MLV) vectors has been optimized successfully for hematopoietic differentiated progenitors, gene transfer to early hematopoietic cells (stem cells) is still highly restricted. A similar restriction to gene transfer was observed in the mouse stem cell line FDC-Pmix compared with transfer in the more mature myeloid precursor cell line F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 43  شماره 

صفحات  -

تاریخ انتشار 2009